Sunday, 15 October 2017

Quantitative Trading Strategies Forex Cargo


Beginner39s Guia de Negociação Quantitativa Neste artigo Im vai apresentá-lo a alguns dos conceitos básicos que acompanham um sistema de comércio quantitativo de ponta a ponta. Este post esperamos servir duas audiências. O primeiro será indivíduos que tentam obter um emprego em um fundo como um comerciante quantitativo. O segundo serão os indivíduos que desejam tentar criar seu próprio negócio de negociação algorítmica de varejo. A negociação quantitativa é uma área extremamente sofisticada de finanças quantitativas. Pode levar uma quantidade significativa de tempo para obter o conhecimento necessário para passar uma entrevista ou construir suas próprias estratégias de negociação. Não só isso, mas requer uma extensa experiência em programação, pelo menos em uma linguagem como MATLAB, R ou Python. Contudo, à medida que a frequência de negociação da estratégia aumenta, os aspectos tecnológicos tornam-se muito mais relevantes. Assim, estar familiarizado com o C / C será de suma importância. Um sistema de comércio quantitativo consiste em quatro componentes principais: Identificação da estratégia - Encontrar uma estratégia, explorando uma borda e decidindo na freqüência negociando Backtesting da estratégia - obtendo dados, analisando o desempenho da estratégia e removendo preconceitos Execution System - ligando a uma corretora, automatizando a troca e minimizando Custos de transação Gerenciamento de Risco - alocação de capital otimizada, tamanho da aposta / critério Kelly e psicologia comercial Bem, comece por dar uma olhada em como identificar uma estratégia de negociação. Identificação da estratégia Todos os processos de negociação quantitativa começam com um período inicial de pesquisa. Este processo de pesquisa envolve encontrar uma estratégia, ver se a estratégia se encaixa em um portfólio de outras estratégias que você pode estar executando, obtendo todos os dados necessários para testar a estratégia e tentar otimizar a estratégia para maiores retornos e / ou menor risco. Você precisará considerar seus próprios requisitos de capital se estiver executando a estratégia como um comerciante varejista e como quaisquer custos de transação afetarão a estratégia. Contrariamente à crença popular é realmente bastante simples de encontrar estratégias rentáveis ​​através de várias fontes públicas. Os acadêmicos publicam regularmente resultados de negociação teóricos (embora na maior parte brutos dos custos de transação). Os blogs quantitativos das finanças discutirão estratégias detalhadamente. Os diários de comércio descreverão algumas das estratégias empregadas pelos fundos. Você pôde questionar porque os indivíduos e as empresas são afiados discutir suas estratégias rentáveis, especial quando sabem que outros que aglomeram o comércio podem parar a estratégia do trabalho no prazo. A razão reside no fato de que eles não costumam discutir os parâmetros exatos e métodos de ajuste que eles têm realizado. Estas otimizações são a chave para transformar uma estratégia relativamente medíocre em uma altamente rentável. Na verdade, uma das melhores maneiras de criar suas próprias estratégias únicas é encontrar métodos semelhantes e, em seguida, realizar o seu próprio procedimento de otimização. Aqui está uma pequena lista de lugares para começar a procurar idéias de estratégia: Muitas das estratégias que você vai olhar para cair nas categorias de média-reversão e tendência-seguinte / momento. Uma estratégia de reversão de média é aquela que tenta explorar o fato de que existe uma média de longo prazo em uma série de preços (como o spread entre dois ativos correlatos) e que os desvios a curto prazo dessa média reverterão. Uma estratégia de dinamismo tenta explorar tanto a psicologia dos investidores como a estrutura de grandes fundos ao encurralar uma tendência de mercado, que pode ganhar impulso em uma direção e seguir a tendência até que ela reverta. Outro aspecto extremamente importante do comércio quantitativo é a freqüência da estratégia de negociação. Negociação de baixa freqüência (LFT) geralmente se refere a qualquer estratégia que detém ativos mais do que um dia de negociação. Correspondentemente, a negociação de alta freqüência (HFT) geralmente se refere a uma estratégia que detém ativos intraday. Ultra-high frequency trading (UHFT) refere-se a estratégias que mantêm ativos na ordem de segundos e milissegundos. Como um praticante de varejo HFT e UHFT são certamente possível, mas apenas com conhecimento detalhado da pilha de tecnologia de negociação e dinâmica livro de pedidos. Nós não vamos discutir esses aspectos em grande medida neste artigo introdutório. Uma vez que uma estratégia, ou um conjunto de estratégias, foi identificado, agora precisa ser testado quanto à lucratividade em dados históricos. Esse é o domínio do backtesting. Backtesting da estratégia O objetivo do backtesting é fornecer evidências de que a estratégia identificada através do processo acima é rentável quando aplicada a dados históricos e fora da amostra. Isso define a expectativa de como a estratégia irá realizar no mundo real. No entanto, backtesting não é uma garantia de sucesso, por várias razões. É talvez a área mais sutil de negociação quantitativa, uma vez que implica vieses numerosos, que devem ser cuidadosamente considerados e eliminados, tanto quanto possível. Discutiremos os tipos comuns de viés, incluindo o viés prospectivo. Viés de sobrevivência e viés de otimização (também conhecido como viés de snooping de dados). Outras áreas de importância dentro de backtesting incluem disponibilidade e limpeza de dados históricos, factoring em custos de transação realistas e decidir sobre uma robusta plataforma de backtesting. Bem, discuta os custos de transação na seção Sistemas de Execução abaixo. Uma vez que uma estratégia foi identificada, é necessário obter os dados históricos através dos quais para realizar testes e, talvez, refinamento. Há um número significativo de fornecedores de dados em todas as classes de ativos. Os seus custos geralmente variam em função da qualidade, profundidade e actualidade dos dados. O ponto de partida tradicional para começar comerciantes quant (pelo menos no nível de varejo) é usar o conjunto de dados livre do Yahoo Finance. Eu não vou me debruçar demais sobre os provedores, mas eu gostaria de me concentrar nas questões gerais ao lidar com conjuntos de dados históricos. As principais preocupações com dados históricos incluem precisão / limpeza, viés de sobrevivência e ajuste para ações corporativas, tais como dividendos e divisão de ações: A exatidão pertence à qualidade geral dos dados - se contém algum erro. Erros às vezes podem ser fáceis de identificar, como com um filtro de pico. Que selecionará pontos incorretos em dados de séries de tempo e corrigirá para eles. Em outros momentos, eles podem ser muito difíceis de detectar. Muitas vezes é necessário ter dois ou mais provedores e, em seguida, verificar todos os seus dados uns contra os outros. O viés de sobrevivência é muitas vezes uma característica de conjuntos de dados gratuitos ou baratos. Um conjunto de dados com viés de sobrevivência significa que ele não contém ativos que não são mais comerciais. No caso das acções, isto significa stocks de acções deletadas / falidas. Esse viés significa que qualquer estratégia de negociação de ações testada em um desses conjuntos de dados provavelmente funcionará melhor do que no mundo real, já que os vencedores históricos já foram pré-selecionados. Ações corporativas incluem atividades logísticas realizadas pela empresa que geralmente causam uma mudança de função passo no preço bruto, que não deve ser incluído no cálculo de retornos do preço. Os ajustes para dividendos e divisões de ações são os culpados comuns. Um processo conhecido como ajuste posterior é necessário para ser realizado em cada uma dessas ações. Deve-se ter muito cuidado para não confundir um grupamento de ações com um verdadeiro ajuste de retorno. Muitos comerciantes foram pegos por uma ação corporativa Para realizar um backtest, é necessário usar uma plataforma de software. Você tem a escolha entre o software dedicado do backtest, tal como Tradestation, uma plataforma numérica tal como Excel ou MATLAB ou uma aplicação feita sob encomenda cheia em uma linguagem de programação tal como Python ou C. Eu não estarei demasiado sobre Tradestation (ou similar), Excel ou MATLAB, pois acredito na criação de uma pilha de tecnologia interna completa (pelas razões descritas abaixo). Um dos benefícios de fazer isso é que o software de backtest e o sistema de execução podem ser bem integrados, mesmo com estratégias estatísticas extremamente avançadas. Para estratégias HFT, em particular, é essencial usar uma implementação personalizada. Quando backtesting um sistema um deve ser capaz de quantificar o quão bem ele está realizando. As métricas padrão da indústria para estratégias quantitativas são a redução máxima ea Taxa de Sharpe. A redução máxima caracteriza a maior queda pico-a-minucioso na curva de equidade da conta durante um determinado período de tempo (geralmente anual). Isso é mais freqüentemente citado como uma porcentagem. As estratégias LFT tendem a ter maiores abaixamentos do que as estratégias HFT, devido a uma série de fatores estatísticos. Um backtest histórico mostrará o drawdown máximo passado, que é um bom guia para o desempenho de drawdown futuro da estratégia. A segunda medição é o Índice de Sharpe, que é definido heuristicamente como a média dos retornos excedentes divididos pelo desvio padrão desses retornos excedentes. Aqui, os retornos excedentes referem-se ao retorno da estratégia acima de um ponto de referência pré-determinado. Como o SP500 ou um Tesouro de 3 meses. Observe que o retorno anualizado não é uma medida normalmente utilizada, pois não leva em conta a volatilidade da estratégia (ao contrário do Índice de Sharpe). Uma vez que uma estratégia foi testada e é considerada livre de preconceitos (na medida em que isso é possível), com um bom Sharpe e reduções minimizadas, é hora de construir um sistema de execução. Sistemas de Execução Um sistema de execução é o meio pelo qual a lista de negócios gerados pela estratégia são enviados e executados pelo corretor. Apesar do fato de que a geração comercial pode ser semi - ou mesmo totalmente automatizada, o mecanismo de execução pode ser manual, semi-manual (ou seja, um clique) ou totalmente automatizado. Para estratégias LFT, técnicas manuais e semi-manuais são comuns. Para as estratégias de HFT é necessário criar um mecanismo de execução totalmente automatizado, que muitas vezes será fortemente associado com o gerador de comércio (devido à interdependência de estratégia e tecnologia). As principais considerações ao criar um sistema de execução são a interface para a corretora. Minimização dos custos de transação (incluindo comissão, deslizamento e spread) e divergência de desempenho do sistema ao vivo de desempenho testado. Há muitas maneiras de interagir com uma corretora. Eles variam de chamar o seu corretor no telefone através de um totalmente automatizado de alto desempenho Application Programming Interface (API). Idealmente, você deseja automatizar a execução de seus negócios, tanto quanto possível. Isso libera você para se concentrar em mais pesquisas, bem como permitem que você execute várias estratégias ou mesmo estratégias de maior freqüência (na verdade, HFT é essencialmente impossível sem a execução automatizada). O software de backtesting comum descrito acima, como MATLAB, Excel e Tradestation são bons para a freqüência mais baixa, estratégias mais simples. No entanto, será necessário construir um sistema de execução interno escrito em uma linguagem de alto desempenho, como C, a fim de fazer qualquer HFT real. Como uma anedota, no fundo que eu costumava ser empregado em, tivemos um loop de negociação de 10 minutos, onde iria baixar novos dados de mercado a cada 10 minutos e, em seguida, executar comércios com base nessa informação no mesmo período de tempo. Isso estava usando um script Python otimizado. Para qualquer coisa que se aproxima de minutos ou de dados de segunda freqüência, eu acredito que C / C seria mais ideal. Em um fundo maior, muitas vezes não é o domínio do comerciante quant para otimizar a execução. No entanto, em pequenas lojas ou empresas HFT, os comerciantes são os executores e, portanto, um conjunto de habilidades muito mais amplo é muitas vezes desejável. Tenha isso em mente se você deseja ser empregado por um fundo. Suas habilidades de programação serão tão importantes, se não mais, do que suas estatísticas e talentos econométricos Outra grande questão que cai sob a bandeira de execução é a de minimização de custos de transação. Geralmente, há três componentes para os custos de transação: Comissões (ou impostos), que são as taxas cobradas pela corretora, pela bolsa e pela derrogação da SEC (ou órgão regulador governamental semelhante), que é a diferença entre o que você pretendia que sua ordem fosse Preenchido em relação ao que foi realmente preenchido no spread, que é a diferença entre o preço de compra / venda do título negociado. Observe que o spread não é constante e depende da liquidez atual (ou seja, disponibilidade de ordens de compra / venda) no mercado. Os custos de transação podem fazer a diferença entre uma estratégia extremamente lucrativa com uma boa relação de Sharpe e uma estratégia extremamente desprotegida com uma proporção de Sharpe terrível. Pode ser um desafio para prever corretamente os custos de transação a partir de um backtest. Dependendo da freqüência da estratégia, você precisará acessar dados históricos de troca, que incluirão dados de carrapatos para preços de oferta / solicitação. Equipes inteiras de quants são dedicadas à otimização da execução nos fundos maiores, por estas razões. Considere o cenário em que um fundo precisa descarregar uma quantidade substancial de negócios (dos quais as razões para fazê-lo são muitas e variadas). Ao lançar tantas ações para o mercado, elas rapidamente diminuirão o preço e poderão não obter uma execução ótima. Daí os algoritmos que gotejam ordens de alimentação para o mercado existem, embora então o fundo corre o risco de derrapagem. Além disso, outras estratégias atacam essas necessidades e podem explorar as ineficiências. Este é o domínio da arbitragem de estrutura de fundo. A grande questão final para os sistemas de execução diz respeito à divergência do desempenho da estratégia com o desempenho testado. Isso pode acontecer por várias razões. Nós já discutimos o viés prospectivo e o viés de otimização em profundidade, ao considerar backtests. No entanto, algumas estratégias não tornam mais fácil testar esses vieses antes da implantação. Isso ocorre em HFT mais predominantemente. Pode haver bugs no sistema de execução, bem como a própria estratégia de negociação que não aparecem em um backtest, mas mostrar-se na negociação ao vivo. O mercado pode ter sido sujeito a uma mudança de regime subseqüente à implantação de sua estratégia. Novos ambientes regulatórios, a mudança do sentimento dos investidores e os fenômenos macroeconômicos podem levar a divergências na forma como o mercado se comporta e, portanto, a rentabilidade de sua estratégia. Gestão de Risco A peça final para o quebra-cabeça negociação quantitativa é o processo de gestão de risco. Risco inclui todos os preconceitos anteriores que discutimos. Ele inclui o risco de tecnologia, tais como servidores co-localizado na troca de repente desenvolvendo um mau funcionamento do disco rígido. Ele inclui risco de corretagem, como o corretor se tornando falido (não tão louco quanto parece, dado o susto recente com MF Global). Em suma, abrange quase tudo o que poderia interferir com a execução de negociação, de que há muitas fontes. Livros inteiros são dedicados à gestão de risco para estratégias quantitativas assim que eu wontt tentativa de elucidate em todas as fontes possíveis do risco aqui. A gestão de riscos também engloba o que é conhecido como alocação de capital ótima. Que é um ramo da teoria da carteira. Este é o meio pelo qual o capital é alocado para um conjunto de diferentes estratégias e para os negócios dentro dessas estratégias. É uma área complexa e depende de algumas matemáticas não-triviais. O padrão da indústria, através do qual a otimização da alocação de capital e alavancagem das estratégias estão relacionadas, é chamado de critério de Kelly. Uma vez que este é um artigo introdutório, eu não vou pensar em seu cálculo. O critério de Kelly faz algumas suposições sobre a natureza estatística dos retornos, que muitas vezes não são verdadeiras nos mercados financeiros, de modo que os comerciantes são frequentemente conservadores quando se trata da implementação. Outro componente chave da gestão de risco é lidar com o perfil psicológico próprio. Existem muitos preconceitos cognitivos que podem fluir para a negociação. Embora isso seja reconhecidamente menos problemático com negociação algorítmica se a estratégia é deixada sozinho Um preconceito comum é que a aversão perda, onde uma posição perdedora não será encerrado devido à dor de ter que perceber uma perda. Similarmente, os lucros podem ser tomados demasiado cedo porque o medo de perder um lucro já ganhado pode ser demasiado grande. Outro viés comum é conhecido como viés de recência. Isso se manifesta quando os comerciantes enfatizam demais os acontecimentos recentes e não a longo prazo. Então, claro, há o par clássico de preconceitos emocionais - medo e ganância. Estes podem muitas vezes levar a sub ou sobre alavancagem, o que pode causar blow-up (ou seja, o título da conta de equidade para zero ou pior) ou lucros reduzidos. Resumo Como pode ser visto, o comércio quantitativo é uma área de finanças quantitativas extremamente complexa, embora muito interessante. Eu literalmente arranhado a superfície do tópico neste artigo e já está ficando bastante longa livros inteiros e artigos foram escritos sobre questões que eu só deu uma frase ou duas para. Por essa razão, antes de aplicar para empregos quantitativos de negociação de fundos, é necessário realizar uma quantidade significativa de estudo de base. No mínimo, você precisará de uma ampla experiência em estatística e econometria, com muita experiência na implementação, através de uma linguagem de programação como MATLAB, Python ou R. Para estratégias mais sofisticadas no final de freqüência mais alta, seu conjunto de habilidades é provável Para incluir modificação do kernel do Linux, C / C, programação de montagem e otimização de latência de rede. Se você estiver interessado em tentar criar suas próprias estratégias de negociação algorítmica, minha primeira sugestão seria ficar bom em programação. Minha preferência é construir o máximo de dados grabber, backtester estratégia e sistema de execução por si mesmo como possível. Se seu próprio capital está na linha, wouldnt você dorme melhor à noite sabendo que você testou inteiramente seu sistema e está ciente de suas armadilhas e de edições particulares Terceirizar isto a um vendedor, ao potencial conservar o tempo no curto prazo, poderia ser extremamente Caro a longo prazo. Estratégias Quanta - são para você As estratégias de investimento quantitativo evoluíram em ferramentas muito complexas com o advento de computadores modernos, mas as raízes de estratégias remontam a mais de 70 anos. Eles são normalmente executados por equipes altamente educadas e usar modelos proprietários para aumentar sua capacidade de bater o mercado. Há mesmo off-the-shelf programas que são plug-and-play para aqueles que procuram simplicidade. Quant modelos sempre funcionam bem quando testado, mas suas aplicações reais e taxa de sucesso são discutíveis. Enquanto eles parecem funcionar bem em mercados de touro. Quando os mercados se esgotam, estratégias quanti está sujeita aos mesmos riscos que qualquer outra estratégia. A história Um dos fundadores do estudo da teoria quantitativa aplicada às finanças foi Robert Merton. Você só pode imaginar o quão difícil e demorado o processo foi antes do uso de computadores. Outras teorias em finanças também evoluíram a partir de alguns dos primeiros estudos quantitativos, incluindo a base da diversificação de carteiras com base na teoria da carteira moderna. O uso de finanças e cálculos quantitativos levou a muitas outras ferramentas comuns, incluindo uma das mais famosas, a Black-Scholes fórmula de precificação opção, que não só ajuda os investidores preço opções e desenvolver estratégias, mas ajuda a manter os mercados em cheque com liquidez. Quando aplicado diretamente ao gerenciamento de portfólio. O objetivo é como qualquer outra estratégia de investimento. Para adicionar valor, alfa ou excesso retorna. Quants, como os desenvolvedores são chamados, compõem modelos matemáticos complexos para detectar oportunidades de investimento. Existem tantos modelos lá fora como quants que desenvolvê-los, e todos afirmam ser o melhor. Um dos pontos de venda mais vantajosos é que o modelo, e, em última instância, o computador, faz a decisão de compra / venda real, não um ser humano. Isso tende a remover qualquer resposta emocional que uma pessoa pode experimentar ao comprar ou vender investimentos. As estratégias de Quant são agora aceitas na comunidade de investimento e geridas por fundos mútuos, hedge funds e investidores institucionais. Eles normalmente vão pelo nome alfa geradores. Ou alfa gens. Atrás da cortina Assim como em O Mágico de Oz, alguém está por trás da cortina de condução do processo. Como com qualquer modelo, seu somente tão bom quanto o ser humano que desenvolve o programa. Embora não exista um requisito específico para se tornar um quant, a maioria das empresas que executam modelos quant combinam as habilidades de analistas de investimento, estatísticos e programadores que codificam o processo nos computadores. Devido à natureza complexa dos modelos matemáticos e estatísticos, é comum ver credenciais como pós-graduação e doutorado em finanças, economia, matemática e engenharia. Historicamente, esses membros da equipe trabalhavam nos back offices. Mas como os modelos de quant tornou-se mais comum, o back office está se movendo para a frente do escritório. Benefícios de estratégias Quant Enquanto a taxa de sucesso global é discutível, a razão de algumas estratégias quant trabalho é que eles são baseados em disciplina. Se o modelo estiver certo, a disciplina mantém a estratégia trabalhando com computadores de velocidade relâmpago para explorar ineficiências nos mercados com base em dados quantitativos. Os próprios modelos podem ser baseados em tão poucas como algumas relações como P / E. Dívida para capital próprio e crescimento de lucros, ou usar milhares de insumos trabalhando juntos ao mesmo tempo. Estratégias bem sucedidas podem pegar em tendências em seus estágios iniciais como os computadores constantemente executar cenários para localizar ineficiências antes que outros fazem. Os modelos são capazes de analisar um grupo muito grande de investimentos simultaneamente, onde o analista tradicional pode estar olhando apenas alguns de cada vez. O processo de triagem pode classificar o universo por níveis de grau como 1-5 ou A-F dependendo do modelo. Isso torna o processo de negociação real muito simples, investindo nos investimentos altamente cotados e vendendo os mais baixos. Quant modelos também abrem variações de estratégias como longo, curto e longo / curto. Fundos quantos bem sucedidos mantêm um olho afiado no controle de risco devido à natureza de seus modelos. A maioria das estratégias começa com um universo ou benchmark e usa ponderações setoriais e industriais em seus modelos. Isso permite que os fundos controlem a diversificação até certo ponto sem comprometer o próprio modelo. Os fundos Quant funcionam normalmente em uma base de custo mais baixo porque eles não precisam de tantos analistas tradicionais e gerentes de portfólio para executá-los. Desvantagens de estratégias Quant Há razões por que tantos investidores não abraçar totalmente o conceito de deixar uma caixa preta executar seus investimentos. Para todos os fundos quant bem sucedidos lá fora, apenas como muitos parecem ser malsucedido. Infelizmente para a reputação dos quants, quando falham, falham grande. Long-Term Capital Management foi um dos mais famosos fundos de hedge, já que foi administrado por alguns dos mais respeitados líderes acadêmicos e dois economistas premiados com o Prêmio Nobel, Myron S. Scholes e Robert C. Merton. Durante os anos 90, sua equipe gerou retornos acima da média e atraiu capital de todos os tipos de investidores. Eles eram famosos por não só explorar as ineficiências, mas usando o acesso fácil ao capital para criar enormes apostas alavancadas nas direções do mercado. A natureza disciplinada de sua estratégia realmente criou a fraqueza que levou ao seu colapso. Long-Term Capital Management foi liquidada e dissolvida no início de 2000. Seus modelos não incluem a possibilidade de que o governo russo poderia inadimplência em parte de sua própria dívida. Esse evento desencadeou eventos e uma reação em cadeia ampliada pelo caos causado pela alavancagem. A LTCM estava tão envolvida com outras operações de investimento que seu colapso afetou os mercados mundiais, provocando eventos dramáticos. A longo prazo, o Federal Reserve interveio para ajudar, e outros bancos e fundos de investimento apoiou LTCM para evitar quaisquer danos adicionais. Esta é uma das razões pelas quais os fundos podem fracassar, pois são baseados em eventos históricos que podem não incluir eventos futuros. Enquanto uma equipe forte quant será constantemente adicionando novos aspectos aos modelos para prever eventos futuros, é impossível prever o futuro cada vez. Quant fundos também podem se tornar oprimido quando a economia e os mercados estão experimentando maior do que a volatilidade média. Os sinais de compra e venda podem vir tão rapidamente que o alto volume de negócios pode criar comissões elevadas e eventos tributáveis. Quant fundos também podem representar um perigo quando eles são comercializados como à prova de urso ou são baseados em estratégias de curto. Previsões de recessão. Usando derivativos e alavancagem de combinação pode ser perigoso. Uma vez errada pode levar a implosões, que muitas vezes fazem a notícia. Bottom Line As estratégias de investimento quantitativo evoluíram de caixas negras de back office para ferramentas de investimento mainstream. Eles são projetados para utilizar as melhores mentes nos negócios e os computadores mais rápidos para explorar as ineficiências e usar alavancagem para fazer apostas no mercado. Eles podem ser muito bem sucedidos se os modelos têm incluído todas as entradas direita e são ágeis o suficiente para prever eventos anormais do mercado. Por outro lado, enquanto os fundos quant são rigorosamente testados até que funcionam, a sua fraqueza é que eles dependem de dados históricos para o seu sucesso. Embora o estilo de estilo de investimento tem seu lugar no mercado, é importante estar ciente de suas deficiências e riscos. Ser coerente com as estratégias de diversificação. É uma boa idéia para tratar estratégias quant como um estilo de investimento e combiná-lo com as estratégias tradicionais para alcançar uma diversificação adequada. Estratégias Quanta - são para você As estratégias de investimento quantitativo evoluíram em ferramentas muito complexas com o advento de computadores modernos, Voltar mais de 70 anos. Eles são normalmente executados por equipes altamente educadas e usar modelos proprietários para aumentar sua capacidade de bater o mercado. Há mesmo off-the-shelf programas que são plug-and-play para aqueles que procuram simplicidade. Quant modelos sempre funcionam bem quando testado, mas suas aplicações reais e taxa de sucesso são discutíveis. Enquanto eles parecem funcionar bem em mercados de touro. Quando os mercados se esgotam, estratégias quanti está sujeita aos mesmos riscos que qualquer outra estratégia. A história Um dos fundadores do estudo da teoria quantitativa aplicada às finanças foi Robert Merton. Você só pode imaginar o quão difícil e demorado o processo foi antes do uso de computadores. Outras teorias em finanças também evoluíram a partir de alguns dos primeiros estudos quantitativos, incluindo a base da diversificação de carteiras com base na teoria da carteira moderna. O uso de finanças e cálculos quantitativos levou a muitas outras ferramentas comuns, incluindo uma das mais famosas, a Black-Scholes fórmula de precificação opção, que não só ajuda os investidores preço opções e desenvolver estratégias, mas ajuda a manter os mercados em cheque com liquidez. Quando aplicado diretamente ao gerenciamento de portfólio. O objetivo é como qualquer outra estratégia de investimento. Para adicionar valor, alfa ou excesso retorna. Quants, como os desenvolvedores são chamados, compõem modelos matemáticos complexos para detectar oportunidades de investimento. Existem tantos modelos lá fora como quants que desenvolvê-los, e todos afirmam ser o melhor. Um dos pontos de venda mais vantajosos é que o modelo, e, em última instância, o computador, faz a decisão de compra / venda real, não um ser humano. Isso tende a remover qualquer resposta emocional que uma pessoa pode experimentar ao comprar ou vender investimentos. As estratégias de Quant são agora aceitas na comunidade de investimento e geridas por fundos mútuos, hedge funds e investidores institucionais. Eles normalmente vão pelo nome alfa geradores. Ou alfa gens. Atrás da cortina Assim como em O Mágico de Oz, alguém está por trás da cortina de condução do processo. Como com qualquer modelo, seu somente tão bom quanto o ser humano que desenvolve o programa. Embora não exista um requisito específico para se tornar um quant, a maioria das empresas que executam modelos quant combinam as habilidades de analistas de investimento, estatísticos e programadores que codificam o processo nos computadores. Devido à natureza complexa dos modelos matemáticos e estatísticos, é comum ver credenciais como pós-graduação e doutorado em finanças, economia, matemática e engenharia. Historicamente, esses membros da equipe trabalhavam nos back offices. Mas como os modelos de quant tornou-se mais comum, o back office está se movendo para a frente do escritório. Benefícios de estratégias Quant Enquanto a taxa de sucesso global é discutível, a razão de algumas estratégias quant trabalho é que eles são baseados em disciplina. Se o modelo estiver certo, a disciplina mantém a estratégia trabalhando com computadores de velocidade relâmpago para explorar ineficiências nos mercados com base em dados quantitativos. Os próprios modelos podem ser baseados em tão poucas como algumas relações como P / E. Dívida para capital próprio e crescimento de lucros, ou usar milhares de insumos trabalhando juntos ao mesmo tempo. Estratégias bem sucedidas podem pegar em tendências em seus estágios iniciais como os computadores constantemente executar cenários para localizar ineficiências antes que outros fazem. Os modelos são capazes de analisar um grupo muito grande de investimentos simultaneamente, onde o analista tradicional pode estar olhando apenas alguns de cada vez. O processo de triagem pode classificar o universo por níveis de grau como 1-5 ou A-F dependendo do modelo. Isso torna o processo de negociação real muito simples, investindo nos investimentos altamente cotados e vendendo os mais baixos. Quant modelos também abrem variações de estratégias como longo, curto e longo / curto. Fundos quantos bem sucedidos mantêm um olho afiado no controle de risco devido à natureza de seus modelos. A maioria das estratégias começa com um universo ou benchmark e usa ponderações setoriais e industriais em seus modelos. Isso permite que os fundos controlem a diversificação até certo ponto sem comprometer o próprio modelo. Os fundos Quant funcionam normalmente em uma base de custo mais baixo porque eles não precisam de tantos analistas tradicionais e gerentes de portfólio para executá-los. Desvantagens de estratégias Quant Há razões por que tantos investidores não abraçar totalmente o conceito de deixar uma caixa preta executar seus investimentos. Para todos os fundos quant bem sucedidos lá fora, apenas como muitos parecem ser malsucedido. Infelizmente para a reputação dos quants, quando falham, falham grande. Long-Term Capital Management foi um dos mais famosos fundos de hedge, já que foi administrado por alguns dos mais respeitados líderes acadêmicos e dois economistas premiados com o Prêmio Nobel, Myron S. Scholes e Robert C. Merton. Durante os anos 90, sua equipe gerou retornos acima da média e atraiu capital de todos os tipos de investidores. Eles eram famosos por não só explorar as ineficiências, mas usando o acesso fácil ao capital para criar enormes apostas alavancadas nas direções do mercado. A natureza disciplinada de sua estratégia realmente criou a fraqueza que levou ao seu colapso. Long-Term Capital Management foi liquidada e dissolvida no início de 2000. Seus modelos não incluem a possibilidade de que o governo russo poderia inadimplência em parte de sua própria dívida. Esse evento desencadeou eventos e uma reação em cadeia ampliada pelo caos causado pela alavancagem. A LTCM estava tão envolvida com outras operações de investimento que seu colapso afetou os mercados mundiais, provocando eventos dramáticos. In the long run, the Federal Reserve stepped in to help, and other banks and investment funds supported LTCM to prevent any further damage. This is one of the reasons quant funds can fail, as they are based on historical events that may not include future events. While a strong quant team will be constantly adding new aspects to the models to predict future events, its impossible to predict the future every time. Quant funds can also become overwhelmed when the economy and markets are experiencing greater-than-average volatility. The buy and sell signals can come so quickly that the high turnover can create high commissions and taxable events. Quant funds can also pose a danger when they are marketed as bear-proof or are based on short strategies. Predicting downturns. using derivatives and combining leverage can be dangerous. One wrong turn can lead to implosions, which often make the news. The Bottom Line Quantitative investment strategies have evolved from back office black boxes to mainstream investment tools. They are designed to utilize the best minds in the business and the fastest computers to both exploit inefficiencies and use leverage to make market bets. They can be very successful if the models have included all the right inputs and are nimble enough to predict abnormal market events. On the flip side, while quant funds are rigorously back tested until they work, their weakness is that they rely on historical data for their success. While quant-style investing has its place in the market, its important to be aware of its shortcomings and risks. To be consistent with diversification strategies. its a good idea to treat quant strategies as an investing style and combine it with traditional strategies to achieve proper diversification.

No comments:

Post a Comment